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Società Italiana di Fisica
Springer-Verlag 2002

Correlation between growth of high-index faces, relative growth
rates and crystallographic structure of crystal

Jolanta Prywera

Institute of Physics, Technical University of L/ ódź, Wólczańska 219, 93-005 L/ ódź, Poland
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Abstract. According to contemporary crystal growth theories, crystals are bound by low-index faces which
are the most slowly growing. However, high-index faces are observed in crystal habits more and more often.
In this paper the growth of high-index faces is analysed from a crystallographic perspective. It is shown that
the crystallographic structure of a given crystal, expressed by the trigonometric function of appropriate
interfacial angles, influences to great degree the crystallisation process and the morphology of crystals, in
particular the behaviour of high-index faces. Additionally, it is concluded that at particular crystallographic
structure of a crystal, a given high-index face may exist in the habit and develop its size, although it grows
much faster than the neighbouring faces.

PACS. 81.10.Aj Theory and models of crystal growth; physics of crystal growth, crystal morphology
and orientation

1 Introduction

Theoretically, a bulk crystal may possess an infinite num-
ber of faces. However, practically grown crystals possess
a limited number of faces which are the slowest grow-
ing faces. In the past, many attempts have been made
to correlate the morphological development of crystals
with their internal structure. First, Bravais and Friedel,
after many observations, established the Bravais-Friedel
law [1,2]. This law reveals the correlation between the
importance of a crystal face and its interplanar distance.
According to this law the observed crystal faces are those
with the largest interplanar distances. The larger the in-
terplanar distance, the more important the corresponding
crystal face. Later, it was shown, first by Niggli [3], then
by Donnay and Harker [4] that this law is sometimes vi-
olated. Therefore, Donnay and Harker extended this law
by considering the screw axis and the glide planes. The
Bravais-Friedel-Donnay-Harker (BFDH) law often gives
satisfactory description of the morphology of crystals.
However, the drawback of the BFDH law is its purely
geometrical character. Further, Hartman and Perdok [5]
developed a more general theory based on an energetic
hypothesis. The Hartman-Perdok (HP) theory introduces
the concept of periodic bond chains (PBCs) which plays
a key role in this theory. A PBC is an uninterrupted
chain of bonds representing strong interactions between
growth units in the crystal lattice. Three types of faces
are distinguished by the classical HP theory: flat faces
(F faces) – parallel to at least two non-parallel inter-
secting PBCs; stepped faces (S faces) – parallel to only
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one PBC; kinked faces (K faces) – not parallel to any
PBC. According to this theory only the F faces are im-
portant for the crystal morphology. Later, Burton et al.
described the transition of flat crystal faces to rough-
ened faces at equilibrium as a function of temperature [6].
Further, the Hartman-Perdok theory was integrated with
the theory of surface roughening [7,8] and the concept of
connected net was introduced [9–11]. A connected net is
a set of growth units connected by bonds constituting a
network. Equivalent connected nets are separated by the
interplanar distance dhkl , corrected for the space group
symmetry (according to the BFDH law). In other words
this is the distance that separates physically identical sur-
faces. Connected nets can be derived from a so-called crys-
tal graph, which is defined as an infinite set of points cor-
responding to the centres of the growth units with strong
bonds between these points. Connected nets have edge
free energies larger than zero in all crystallographic direc-
tions parallel to the net. Faces parallel to a connected net
grow as flat faces (called F faces in the HP theory) below
a specific roughening temperature and as rough rounded
off faces above this temperature. In most cases the low-
index faces of crystals are growing below their roughen-
ing temperature as flat faces with well-defined (hkl) ori-
entation by a layer mechanism, like spiral growth or two-
dimensional nucleation. High-index faces are not parallel
to a connected net and have a roughening temperature
equal to 0 K and, therefore, they grow as rough rounded
off faces. In the other words high-index faces are fast-
growing and therefore, they exist in the habit very rarely.
The faces limiting the crystals are slow-growing faces i.e.
low-index faces. However, high-index faces are observed



62 The European Physical Journal B

in crystals. For example, the authors of the paper [12]
describe the concanavalin A crystal with high-index face
which appearance in the habit is very common. There are
only few papers (e.g. [13]) in which an attempt to explain
such a phenomenon is undertaken.

The aim of this paper is to show that the behaviour
of both low-index and high-index faces is influenced, on
one hand, by the growth environment which determines
the relative growth rates, but on the other hand, by the
geometry of the crystal as well. We present an analytical
expression which explains the increasing in size of high-
index faces and disappearance of low-index faces. All our
considerations are in connection with the crystallographic
structure of crystals.

2 Method of analysis

For crystals for which surface patterns cannot be observed
by interferometry or AFM in or ex situ, for example, in
a case of natural crystals or crystals grown from high-
temperature solution, the internal morphology is very in-
formative to investigate the growth processes. All changes
or fluctuations of growth conditions occurring during the
growth process are “recorded” in the crystal in a form of
growth bands, growth sectors, growth sector boundaries,
i.e. in a form of internal morphology which is revealed
in crystal cross-sections. The internal morphology makes
it possible to investigate the evolution of faces depend-
ing on relative growth rates as the growth bands appear
in unknown time intervals. Straight boundaries between
adjacent sectors correspond to constant relative growth
rates of the faces whose sectors created this boundary.
Bent boundaries between growth sectors indicate that the
relative growth rates are not constant.

From the above it ensues that internal morphology
revealed in crystal cross-section gives the possibility to
analyse and follow the evolution of individual faces. For
that reason, in order to investigate the behaviour of a
given face, in particular a high-index face, we introduce
the idea of the critical growth rate Rcrit

A . The critical
growth rate Rcrit

A is defined as the normal growth rate of
the face A at which this face (shown in Fig. 1) preserves
its size [14,15]. The critical growth rate Rcrit

A is expressed
by the formula [14,15] which combines the growth rates
of individual faces with the crystallographic structure of
crystal represented by appropriate interfacial angles:

Rcrit
A =

RB sinγ + RD sinα

sin(α + γ)
· (1)

The growth rates RB and RD are the normal growth rates
of the faces B and D, respectively. The faces B and D
are the neighbouring faces of the face A (Fig. 1). The
angles α and γ are the angles between normals to the
pairs of the faces: A/B and A/D (Fig. 1), respectively.
As it was mentioned above, the critical growth rate Rcrit

A
means the growth rate of the face A, situated between the
faces B and D, at which this face preserves its initial size
(RA/Rcrit

A = 1). This may be observed on the example of
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Fig. 1. Exemplary cross-section of a hypothetical 3D crystal
with the considered face A and its neighbouring faces B and D;
RA, RB, RD – the normal growth rates of the faces A, B and D,
respectively; α, γ – the interfacial angles; GB – growth bands;
GS – growth sectors; GSB – growth sector boundaries; m4 to
m11 denote the consecutive growth bands on the face A′ growth
sector.

the face A′ visible in Figure 1. Here, the ratio RA′/Rcrit
A′ ,

beginning from the seed up to the m4 growth band, is
equal to unity and, therefore, this face preserves its initial
size. If the face A grows with the normal growth rate RA

smaller than Rcrit
A (RA/Rcrit

A < 1), then the initial size of
the face A increases. In the case of the exemplary face A′

(Fig. 1) the ratio RA′/Rcrit
A′ changes its value becoming

smaller than unity beginning from m4 to m8 growth band.
It leads to the increasing in size of the face A′. When
the growth rate RA is greater than Rcrit

A (RA/Rcrit
A > 1)

the initial size of the face A decreases. In the case of the
face A′ shown in Figure 1, the ratio RA′/Rcrit

A′ is greater
than unity, beginning from m8 growth band till the end
of the growth process. This is why this face decreases its
size at this stage of growth.

Substituting the values of growth rates and angles ap-
propriate for any face into equation (1) it is possible to
evaluate the critical growth rates Rcrit

A for different faces
of a given crystal. Having the critical growth rates Rcrit

A
which correspond to changes in sizes of different faces,
we draw them in one graph in a Cartesian system ob-
taining the so-called graph of the critical relative growth
rates [16]. In the general case, the critical growth rates
Rcrit

A are planes (or lines) which cross in the space of this
graph. These crossing planes divide the graph into differ-
ent regions. Each region corresponds to different appropri-
ate relative growth rates and therefore, different changes
in the habit. This means that, on the basis of such a graph,
it is possible to analyse the behaviour of faces during the
growth process depending on relative growth rates of ap-
propriate faces. Moreover, it is possible to draw, using
computer simulations, the external habits which corre-
spond to each region of the graph, and the cross-sections
of these habits (internal morphology). Such cross-sections
are a very good complement to the graph of the critical
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relative growth rates, which allow us to follow changes
of the growth sectors, growth boundaries and, finally, the
whole habit, occurring in response to the changes of the
relative growth rates of the individual faces.

In this paper, the described above method is applied to
a concanavalin A crystal which is chosen as an example to
investigate the behaviour of high-index faces which often
appear in this crystal.

3 Results and discussion

In order to investigate the behaviour of high-index faces,
let us consider, as an example, a lecithin protein con-
canavalin A crystal. This crystal belongs to the or-
thorhombic space group I222 with unit cell constants:
a = 89.2 Å, b = 87.2 Å, c = 63.1 Å [17]. According
to Moré and Saenger [18] the concanavalin A crystal is
bound by low-index faces, in particular {100} and {010}
faces. However, in reference [12], the authors suggest that
the high-index faces {n1n}, where the value n ranged from
7 to 11, appear instead of the low-index {100} and {010}
faces. Moreover, the authors found the {n1n} faces of con-
canavalin A crystal to be macroscopically flat, in spite of
high Miller indices. For this reason, this crystal is very
interesting to investigate the presence and behaviour of
high-index faces and was therefore chosen as a modelling
crystal.

3.1 Different morphology evolution of concanavalin
A crystal depending on relative growth rates

For the purpose of this article let us assume that in the
concanavalin A crystal, besides low-index faces such as
{100}, there exist high-index faces {n1n}, we assume that
n = 7 (Fig. 2a). As the internal morphology is much more
helpful in studying the changes of the crystal habit let
us cleave the crystal shown in Figure 2a along the s line.
In this way we obtain the cross-section of concanavalin A
crystal shown in Figure 2b. It should be pointed out that
the final crystal habit of this crystal with low-index faces
and high-index faces shown in Figure 2 is considered as a
model to study the existence of high-index faces. We note
that all faces which appear in this habit were experimen-
tally observed and reported [12,18].

As it is seen in Figure 2b, the high-index faces {717}
have two neighbouring faces {100} and {001}. In order
to investigate the behaviour of these faces and its depen-
dence on relative growth rates and crystallographic struc-
ture of the crystal let us analyse the following critical
relative growth rates: Rcrit

{717}/R{100}, Rcrit
{001}/R{100} and

Rcrit
{100}/R{717}. These critical relative growth rates allow

us to analyse the changes in size of all faces appearing
in this cross-section, i.e. {717}, {001} and {100}, respec-
tively. However, in order to have all these dependences in
one graph, aiming to have the same variables in all equa-
tions, we write the critical relative growth rates in the
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Fig. 2. (a) The theoretically assumed growth morphology of
concanavalin A crystal with the considered high-index {717}
face. The s line indicates the position of the cross-section pre-
sented in b); (b) The cross-section of concanavalin A. The val-
ues of the interfacial angles between normals to appropriate
faces which appear in this cross-section are presented.

following forms:

Rcrit
{717}

R{100}
= 0.58 + 0.82

R{001}
R{100}

, (2)

R{717}
R{100}

=
1

1.23

Rcrit
{001}

R{100}
, (3)

R{717}
Rcrit

{100}
=

1
1.75

· (4)

The detailed explanation how these equations were de-
rived is given in Appendix A.

Now, it is possible to draw these three critical relative
growth rates in one graph – it is shown in Figure 3. The
line 1 in this figure illustrates the dependence given by
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Fig. 3. The lines 1, 2 and 3 representing the critical relative growth rates: Rcrit
{717}/R{100}, Rcrit

{001}/R{100} and R{717}/Rcrit
{100}

given by equations (2, 3) and equation (4), respectively. The regions I, II, III, IV and V created by these crossing lines are
regions of the appropriate relative growth rates corresponding to the growth of crystals of different morphologies, of which the
cross-sections are shown in Figure 4. The relative growth rates for each of these cross-sections are marked and, additionally,
they are presented in Table 1.

equation (2) (critical relative growth rate Rcrit
{717}/R{100}),

the line 2 – given by equation (3) (Rcrit
{001}/R{100}) and

the line 3 – given by equation (4) (R{717}/Rcrit
{100}). These

three crossing lines divide the space of the graph into five
regions: I, II, III, IV and V as denoted in Figure 3. Each
region corresponds to different changes in crystal habit,
therefore, the analysis of these regions allows us to re-
search the behaviour of all faces existing in the given cross-
section shown in Figure 2b, in particular the behaviour of
high-index face {717}. In order to make such an anal-
ysis easier, in Figure 4 we present the cross-sections of
concanavalin A crystals, which correspond to each region
of the graph. These cross-sections are obtained by com-
puter simulation using program SHAPE (ver. 4.1.1. pro-
fessional [19], the basic concepts of the software were pub-
lished in Ref. [20]). We assume in our discussion that the
growth process proceeds from identical seeds which pos-
sess all the faces appearing in final habits and moreover,
that the individual faces are of the same size. As it is men-
tioned earlier, we focus in this paper on the changes in size
of all faces which appear in the cross-sections, i.e. {717},
{001} and {100}. These sets may take different values of
the growth rates, however, they are constant for each crys-
tal for which the cross- section is presented in Figure 4 (it
is assumed that the growth rate of a given face is con-
stant during the growth of a single growth layer. Then,
the distance between growth layers is proportional to the
growth rate of the appropriate face). Consistently, the
cross-sections presented in Figure 4 differ from each other
by the relative growth rates R{717}/R{100}, R{001}/R{100}
and R{717}/R{001}, therefore, as the seeds grow, the crys-
tals of different habits appear. The theoretically assumed

values of these relative growth rates for each cross-section
are presented in Table 1 and additionally, these values are
marked in Figure 3.

First, we consider the region I. This region lies above
all three lines of appropriate critical relative growth rates.
This means that for the relative growth rates from this re-
gion, the sizes of faces {717} decrease while the sizes of the
sets {100} and {001} increase. This is shown in Figure 4a.
Here, the face {717} is the fastest growing face (the rela-
tive growth rate R{717}/R{100} = R{717}/R{001} = 1.50)
and the face {717}, in compliance with our expectations,
decreases its size – Figure 4a.

The region II (Fig. 3b) lies between three lines of the
critical relative growth rates, namely above the lines 2, 3
and below the line 1. From this it follows, that for the rel-
ative growth rates from this region, the sets {717}, {100}
and {001} increase their sizes. Such a situation is shown in
Figure 4b. Here, the face {717} is also the fastest growing
face (R{717}/R{100} = R{717}/R{001} = 1.20 – Tab. 1), as
in the case of region I, however, in this case, the face {717}
increases its size – Figure 4b. This unusual behaviour of
this face may be explained based on crystallographic struc-
ture of this crystal represented by the interfacial angles α
and γ. This is analysed in detail in Section 3.2. Here, we
conclude that such a phenomenon occurs for particular
relative growth rates only.

The region III (Fig. 3) is above the line 2 and simul-
taneously below the lines 1 and 3. Therefore, the growth
with the growth rates from this region guarantees the in-
crease in the sizes of the sets {717} and {001} and, simul-
taneously, the decrease of the size of the set {100}. Such a
situation is shown in Figure 4c. Here we can see that the
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Fig. 4. The exemplary cross-sections of concanavalin A crystal habits corresponding to different regions of the graph of critical
relative growth rates presented in Figure 3. For all these cross-sections the growth process begins from identical seeds. The
number of growth bands and the time distance between them are the same. The appropriate relative growth rates for each
cross-section are presented in Table 1 and, additionally, are marked in Figure 3.

Table 1. The theoretically assumed relative growth rates R{001}/R{100}, R{717}/R{100} and R{717}/R{001} for which appropriate
cross-sections shown in Figure 4 are obtained and the changes in sizes of the individual sets of faces corresponding to appropriate
regions of the graph presented in Figure 3. Symbol ↑ means that a given set increases its size in a given region of the graph;
↓ means that a given set decreases its size in a given region of the graph.

Set of faces:
           The relative
                   growth
                        rate:
Cross-section
shown in:

}100{

}001{

R

R

}100{

}717{

R

R

}001{

}717{

R

R

{717} {100} {001}

Fig. 4a -  region I 1.00 1.50 1.50 ↓ ↑ ↑ 
Fig. 4b - region II 1.00 1.20 1.20 ↑ ↑ ↑
Fig. 4c - region III 0.50 0.53 1.07 ↑ ↓ ↑
Fig. 4d - region IV 1.30 1.00 0.77 ↑ ↑ ↓
Fig. 4e - region V 0.76 0.50 0.66 ↑ ↓ ↓
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{717} face also increases in size, although it grows faster
than one of the neighbouring set of faces, namely the set
{001} (Tab. 1).

The region IV corresponds to increasing in size of
{717} and {100} faces and simultaneously decreasing of
the {001} face size. Such a situation is shown in Fig-
ure 4d. Here, the {717} face grows equally fast as one of
the neighbouring set {100} (Tab. 1) and, in spite of this,
the {717} face increases its size. For appropriate relative
growth rates lying in the region V the {717} face increases
its size and, at the same time, the faces {100} and {001}
decrease their sizes as illustrated in Figure 4e.

In this section we have shown that for given relative
growth rates R{717}/R{100} and R{717}/R{001} an unusual
phenomenon occurs, namely the high-index face {717} of
concanavalin A crystal develops its size although it grows
faster than the neighbouring faces (Figs. 4b and c). In
the next Section (3.2) we will analyse the connections of
this phenomenon with the crystallographic structure of
crystal.

3.2 Increasing in size of fast growing high-index
face {717} in connection with the crystallographic
structure of concanavalin A crystal

In the general case the analysis of the relations between
the crystallographic structure of a crystal with the growth
of high-index faces is based on the equation (1) trans-
formed to the form:

RA

Rcrit
A

=
sin(α + γ)

sinγ

RA/RB
+

sinα

RA/RD

· (5)

The physical meaning of equation (5) is that for
RA/Rcrit

A < 1, the face A increases in size; for RA/Rcrit
A =

1, the face A preserves its size; for RA/Rcrit
A > 1, the face

A decreases its size (cf. the explanation concerning Eq. (1)
– Sect. 2).

If we assume that the face A is a fast-growing high-
index face, we are interested in whether the ratio RA/Rcrit

A
may be smaller than unity at a given crystallographic
structure of crystal for RA/RB > 1 and RA/RD > 1. In
other words if the inequality given by:

sin(α + γ)
sin γ

RA/RB
+

sinα

RA/RD

< 1 (6)

is satisfied for given values of relative growth rates
RA/RB > 1 and RA/RD > 1, then the given high-index
face A increases in size growing faster than both neigh-
bouring faces B and D for given crystallographic structure
of crystal i.e. for appropriate angles α and γ.

The dependence given by equation (6) applied to a
concanavalin A crystal, precisely to the considered high-
index {717} face of this crystal, is presented in Fig-
ure 5a. If we substitute into this equation α = 35.35◦
and γ = 55.08◦ (cf. Fig. 2), we obtain the dependence
of RA/Rcrit

A = R{717}/Rcrit
{717} on RA/RB = R{717}/R{100}

b)

curve 1
curve 3

cu
rv

e
2

a)

R{717}

R{717}
crit

R
RA

D

R{717}

R{001}

4.0

2.0

0.0

0.0

1.0

2.0

3.0

4.0

R {7
17}

R {7
17}

cr
it

=
1

cu
rv

e
1

limiting surfacefor Eq. (6)

R{717}

R{100}

R
RA

B

0.0

2.0

4.0

0.0

0.0 3.0

5.0

5.04.0

4.0

3.0

2.0

2.0

1.0

1.0

R
RA

D

R
RA

B

R{717}

R{001}

R{717}

R{100}

RA

RA
crit

Fig. 5. (a) Dependence of the RA/Rcrit
A ratio on the rela-

tive growth rates RA/RB and RA/RD (Eq. (6)) applied for
concanavalin A crystal (R{717}/Rcrit

{717} on R{717}/R{100} and
R{717}/R{001}) i.e. for α = 35.35◦ and γ = 55.08◦. (b) The

curves representing intersections of limiting surfaces RA/Rcrit
A

given by equation (6) with the RA/Rcrit
A = 1 plane. Curve 1

corresponds to the surface shown in Figure 5a obtained for con-
canavalin A crystal. The shaded region means that for relative
growth rates R{717}/R{100} and R{717}/R{001} lying in this re-
gion the {717} face of this crystal develops its size although it
grows faster than both the neighbouring faces. The angles α
and γ are respectively equal to: 35.35◦ and 55.08◦ for curve 1,
25.35◦ and 45.08◦ for curve 2, 45.35◦ and 65.08◦ for curve 3.

and RA/RD = R{717}/R{001} shown in Figure 5a. Ad-
ditionally, the plane RA/Rcrit

A = R{717}/Rcrit
{717} = 1 is

shown. The curve 1 is the intersection line of this plane
with the limiting surface given by equation (6) applied
to concanavalin A crystal. From this figure it is seen
that depending on the values of the relative growth rates
R{717}/R{100} and R{717}/R{001} the ratio R{717}/Rcrit

{717}
takes values smaller than (below the curve 1), equal to



Jolanta Prywer: Correlation between growth of high-index faces, relative growth rates... 67

(on the curve 1) or greater than (above the curve 1)
unity. This means that these relative growth rates in-
fluence the behaviour of the {717} face and depending
on their values this face increases, preserves or decreases
its size, respectively. We can also notice that the ratio
R{717}/Rcrit

{717} takes values smaller than unity even for
relative growth rates R{717}/R{100} and R{717}/R{001}
greater than unity. This indicates that the {717} face in-
creases its size even when it grows faster than both the
neighbouring faces {100} and {001}. It is easier to notice
this looking at Figure 5b. This figure shows the curves rep-
resenting intersections of limiting surfaces RA/Rcrit

A given
by equation (6) with RA/Rcrit

A = 1 plane for various values
of the angles α and γ. Curve 1 corresponds to the surface
shown in Figure 5a obtained for concanavalin A crystal,
i.e. for α = 35.35◦ and γ = 55.08◦. The shaded region
means that for relative growth rates R{717}/R{100} and
R{717}/R{001} lying in this region, the high-index {717}
face of this crystal develops its size even though it grows
faster than both the neighbouring faces {100} and {001}.
The range of this region of the relative growth rates, for
which such a phenomenon occurs, depends on the crystal-
lographic structure of a given crystal which is represented
by the interfacial angles α and γ. To prove this let us con-
centrate for a while on the curve 2 which is obtained for
α = 25.35◦ and γ = 45.08◦. It is seen that the region of
relative growth rates for which the given face with these in-
terfacial angles would increase in spite of its growing faster
than the neighbouring faces is much smaller in comparison
with that for {717} face. On the other hand, there exist
faces with such interfacial angles for which the range of
the region of the appropriate relative growth rates is very
wide. For example, curve 3 is obtained for α = 45.35◦ and
γ = 65.08◦, and it is seen that the face with these an-
gles would develop its size even if it grew four times faster
than the neighbouring face D (RA/RD = 4). It should be
pointed out that the values of angles α and γ for which
the curves 2 and 3 are obtained are assumed theoretically
and they are not connected with concanavalin A crystal.

From the above it follows that the phenomenon of de-
veloping of sizes of crystal faces growing faster than the
neighbouring faces depends, on one hand, on the relative
growth rates, but on the other hand, on the crystallo-
graphic structure of crystal. However, for given relative
growth rates the existence of such an effect depends only
on crystallographic structure of a given crystal represented
by appropriate interfacial angles. There exist faces with
such interfacial angles, that they increase in size even if
they grow much faster than the neighbouring faces. High-
index faces are often those with such interfacial angles.
Therefore, such a crystallographic structure of high-index
faces may be one of the possible explanations of growth
and existence of these faces in crystal morphologies. It
should be pointed out that this is purely geometrical ef-
fect, not connected with energetic influences. On the other
hand it should be emphasised that in reference [12], the
authors described the {n1n} faces of concanavalin A crys-
tals as flat faces. Taking this into account and taking into
account the theoretical background briefly presented in

SEED

(7
17)

(717)
--

(001)

Fig. 6. The cross-section of concanavalin A crystal illustrating
the disappearance of low-index (001) face.

Introduction, it is possible to draw a conclusion that also
high-index faces could grow with a layer mechanism with
well defined orientation.

3.3 The behaviour of low-index faces on the example
of {001} face of concanavalin A crystal

Let us take a closer look at Figure 6 which illus-
trates an unusual behaviour of the (001) face, one of
the faces from the set {001} of concanavalin A crys-
tal. This face has two neighbouring faces from the set
{717}, namely (717) and (7̄1̄7) faces (Fig. 6). The low-
index face (001) grows here with the following relative
growth rates R(001)/R(717) = 2.0 and R(001)/R(7̄1̄7) = 1.0.
In other words, the (001) face grows faster than the (717)
face and equally fast as the (7̄1̄7) face. We can see in
Figure 6 that, unexpectedly, the low-index (001) face
decreases and finally disappears, while both the neigh-
bouring high-index faces (7̄1̄7) and (717) develop their
sizes. This unusual phenomenon is also determined by the
crystallographic structure of the crystal. As it is derived
in reference [21], such a phenomenon occurs only when
2α + γ < π – the face A may disappear at growth rate
smaller than RD; or 2γ+α < π – the face A may disappear
at growth rate smaller than RB. Additionally, the relative
growth rate RB/RD must satisfy a given condition which
is also determined by the angles α and γ [21]. From this it
follows that unexpected behaviour of not only high-index
faces but also low-index faces may be explained based on
crystallographic structure of a given crystal.

4 Conclusions

From the above analysis we conclude that the existence
and developing of size of high-index faces may be ex-
plained based on crystallographic structure of a given
crystal. Usually, high-index faces, which appear between
low-index faces, produce such interfacial angles that even
growing faster than the neighbouring faces, they need not
decrease and, as a result, disappear from crystal morphol-
ogy but contrariwise, they may increase in size. Addition-
ally, low-index faces, at particular crystallographic struc-
ture of a given crystal may disappear growing more slowly
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than or equally fast as one of the neighbouring faces. Both
these facts determine the basis for one of the possible ex-
planations of the growth and existence of high-index faces
in crystal morphologies. It should be pointed out that
these conclusions are drawn from purely crystallographic
arguments, not the energetic ones.

In order to illustrate the proposed ideas, they were
applied to concanavalin A crystal in which the high-
index {717} faces are observed. The crystallographic
structure of this crystal is such that this high-index face
increases in size even if it grows faster than the neigh-
bouring faces. Additionally, it is shown that the low-index
{001} face decreases its size growing equally fast as one of
the neighbouring faces. This effect is also determined by
the crystallographic structure of concanavalin A crystal.
Additionally, as the {n1n} faces (n ranged from 7 to 11)
of this crystal were found to be macroscopically flat [12],
it is possible that high-index faces grow by a layer mecha-
nism. This is an open challenge for the theory, because, in
principle, high-index faces are supposed to grow as rough
rounded off faces.

Appendix A

Equation (2) deals with the set {717} and its size changes.
It was obtained by substituting Rcrit

{717} as Rcrit
A , R{100} as

RB and R{001} as RD into equation (1) and taking the
angles α = 55.08◦ and γ = 35.35◦ (cf. Fig. 2b). It is
seen that the Rcrit

{717}/R{100} ratio is a linear function of
the relative growth rate R{001}/R{100}, which may change
with growth conditions.

In order to precisely analyse the changes in size of the
{001} face, we should consider the relative growth rate
Rcrit

{001}/R{100}. In this case RB = RD = R{717} and the
angles α = γ = 35.35◦. Substituting these data into equa-
tion (1) and dividing by R{100}, we obtain that the critical
relative growth rate Rcrit

{001}/R{100} equals to:

Rcrit
{001}

R{100}
= 1.23

R{717}
R{100}

· (A1)

It is seen that the Rcrit
{001}/R{100} ratio is a linear func-

tion of the relative growth rate R{717}/R{100}, which may
change with growth conditions.

Finally, let us take a closer look at the set {100}. In this
case RB = RD = R{717} and the angles α = γ = 55.08◦
(cf. Fig. 2b). Substituting these data into equation (1) and
dividing by R{717} we obtain that:

Rcrit
{100}

R{717}
= 1.75. (A2)

The ratio Rcrit
{100}/R{717} is constant and independent of

the growth rates of neighbouring faces.
In this way we have found three dependences given

by equations (2, A1) and (A2), which deal with the

size changes of the sets {717}, {001} and {100}, respec-
tively. The values of the critical relative growth rates es-
timated on the basis of these equations mean that for the
relative growth rates R{717}/R{100}, R{001}/R{100} and
R{100}/R{717} equal to the critical ones, the sizes of, re-
spectively, the sets {717}, {001} and {100}, remain the
same during the further growth process. The growth with
the relative growth rates R{717}/R{100}, R{001}/R{100}
and R{100}/R{717} smaller (greater) than critical leads to
continuous increase (decrease) in the size of the sets {717},
{001} and {100}, respectively.

In order to consider all these dependence in one graph,
it is necessary to rearrange these equalities, aiming to
have the same variables in all equations. It is very conve-
nient to consider the dependence of R{717}/R{100} on vari-
able R{001}/R{100} (cf. Eq. (2)). To achieve this, we have
to rearrange two equalities, namely equations (A1, A2),
while equation (2) remains unchanged. After rearranging
the equation (A1) takes form of equation (3) and trans-
forming equation (A2) properly, we obtain equation (4).
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